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Following up Section 1.4 on the approximation of specific functions with neural networks (e.g.
R ∋ x 7→ x2), we now move to a series of constructive and uniform approximation results over classes
of multivariate functions. That is, given a class F of functions f : Rd → R, we study to what extent
they are approximated altogether by neural networks, and what complexity (width, depth, activation
function) is necessary to achieve some target precision ε > 0. For sake of simplicity, we focus on the
space of Lipschitz functions.

Definition 2.1. For d ≥ 1 andΩ⊂Rd , the space of 1-Lipschitz functions overΩ is

Lip1(Ω) := {
f :Ω→R,∀x, y ∈Ω, | f (x)− f (y)| ≤ ∥x − y∥} ,

where ∥ ·∥ stands for the Euclidean distance.

2.1 Piecewise constant activation: a shallow world

We first examine the case of the piecewise constant Heaviside activation ρ(u) = 1u≥0, yielding piece-
wise constant realizations of networks with the following approximation property.

Proposition 2.2 (Upper Bound with Heaviside Activation). There exists Cd > 0 such that the following
holds. For all s ≥Cd , there exists an architecture of neural networks with at most ∥Φ∥0 ≤ s weights and
2 hidden layers (L = 3), denoted by (ΦW )W ∈Rs , such that with the Heaviside activation ρ(u) = 1u≥0, we
have

sup
f ∈Lip1([0,1)d )

inf
W ∈Rs

∥R(ΦW )− f ∥∞ ≤Cd s−1/d .

Proof. The idea is to approximate functions f ∈ Lip1([0,1)d ) with neural nets that are piecewise con-
stant over a fixed grid of [0,1)d . More precisely, for all integer m ≥ 1, consider the regular subdivision
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of [0,1]d into md closed cubes (C ( j )) j of sidelength 1/m, and x( j ) ∈ C ( j ) for its center. Denote the
histogram-like function

f̃ (x) :=
md∑
j=1

f (x( j ))1C ( j ) (x),

for all x ∈ [0,1)d . As f ∈ Lip1([0,1)d ) and (C ( j )) j is a partition of [0,1)d , we have ∥ f − f̃ ∥∞ ≤p
d/m. To

end the proof, we will now prove that f̃ can actually be represented as a neural network with Heavyside
activation function.

For this, assume for simplicity that C ( j ) = x( j ) +∏d
j=1[0,1/m), so that it becomes clear that

x ∈C ( j ) ⇔∀i ∈ {1, . . . ,d} ,0 ≤ 〈ei , x −x( j )〉 < 1/m

⇔∀i ∈ {1, . . . ,d} ,

{
〈ei , x( j )〉 ≤ 〈ei , x〉
1/m > 〈ei , x〉

⇔∀i ∈ {1, . . . ,d} ,

{
ρ(〈ei , x〉−〈ei , x( j )〉) = 1

1−ρ(〈ei , x〉−1/m) = 1

⇔
d∑

i=1
ρ(〈ei , x〉−〈ei , x( j )〉)+1−ρ(〈ei , x〉−1/m) ≥ 2d

⇔ ρ

(( d∑
i=1

ρ(〈ei , x〉−〈ei , x( j )〉)−ρ(〈ei , x〉−1/m)
)−d

)
= 1.

As a result, the last expression shows that 1C ( j ) writes as a neural network with two hidden layers,
through the exact representation

f̃ (x) :=
md∑
j=1

f (x( j ))ρ

(( d∑
i=1

ρ(〈ei , x〉−〈ei , x( j )〉)−ρ(〈ei , x〉−1/m)
)−d

)
.

In all, this neural net has two hidden layers, and contains at most

∥Φ∥0 ≤ md︸︷︷︸∑
j

+ md︸︷︷︸
f (x( j ))

+md (
1︸︷︷︸
−d

+ 2d︸︷︷︸∑
i

+2d( 1︸︷︷︸
1/m,〈ei ,x( j )〉

+ d︸︷︷︸
〈ei ,x〉

)
)≤ cd md

weights. Taking s = cd md hence yields ∥ f − f̃ ∥∞ ≤ c ′d s−1/d , which concludes the proof.

The above result does not let any fundamental structure of network appear. That is, the two hidden
layers of the networks of Proposition 2.3 are nearly fully connected, and their width scales as their
number of weights Nmax(Φ) ≍ ∥Φ∥0. With Proposition 1.14 in mind, one may wonder whether deeper
neural networks with the same number of weights s couldn’t have a better accuracy over Lip1([0,1]d ).
As proven in the following result, the answer appears to be negative, even with more complicated
piecewise constant ρ.

Proposition 2.3 (Lower Bound with Piecewise Constant Activation). For s large enough, we have the
following. For all architecture of neural networks (ΦW )W ∈Rs with at most ∥Φ∥0 ≤ s weights, and all
piecewise constant activation ρ :R→Rwith p +1 ≥ 2 pieces, we have

sup
f ∈Lip1([0,1]d )

inf
W ∈Rs

∥R(ΦW )− f ∥∞ ≥C ′
d (s log(ps))−1/d .
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Proof. The proof is omitted, as it rests on complexity ideas that will be further developed in Chapter 3.
In short, the main ingredients for the proof are the following:

• On one hand, the space Lip1([0,1]d ) is rich enough, so that it requires numerous approximating
function. More precisely, one can show that there exists εd > 0 such that for all class A of neural
networks from [0,1]d to R,

sup
f ∈Lip1([0,1]d )

inf
Φ∈A

∥R(Φ)− f ∥∞ ≥ εd ∧
(

1

dVC(HA )

)1/d

, (2.1)

where dVC(HA ) stands for the VC-dimension of the class of classifiers HA := {
sign◦R(Φ)

}
Φ∈A .

• On the other hand, the class Aρp ,s of realisation of neural networks with piecewise constant ρp and
a limited number ∥Φ∥0 ≤ s of weights yields a VC-dimension (see (3.4) in Chapter 3)

dVC(HAρp ,s ) ≤ cd s log(ps). (2.2)

Combining the two bounds yields Proposition 2.3.

From Proposition 2.3, we see that:

• If a budget s of coefficients is given, the histogram-like construction of Proposition 2.3 yields an
optimal approximation of the class Lip1([0,1]d ) with Heaviside activation (up to a log(s) factor).

• Depth does not play any role in the approximation properties of neural networks with piecewise
constant activation.

• Adding more values to a piecewise constant activation function can only contributes logarithmically
to the expressiveness of the class of networks.

Hence, we now move towards a richer (and more standard) activation function: the Rectified Linear
Unit.

2.2 Expressivity of ReLU networks

This section explains the relations between expressivity, depth, and weight discontinuity of neural
networks with ReLU activation ρ(u) = u+.

As seen in Proposition 1.14, shallow (L small) ReLU networks cannot approximate uniformly by
shallow non-affine smooth functions, unless their width is large, or vice-versa.

Theorem 2.4 (A First Upper Bound for ReLU). For s large enough, there exists a neural network ar-
chitecture (ΦW )W ∈Rs with less than s weights, such that with the ReLU activation function function
ρ(u) = u+, we have

sup
f ∈Lip1([0,1]d )

inf
W ∈Rs

∥ f −R(ΦW )∥∞ ≲ s−1/d .

This architecture can be chosen to consist of ≲ Nmax(ΦW )≲ s parallel blocks having the same architec-
ture that only depends on d, with depths L(ΦW ) depending only on d.
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Proof. For simplicity of the exposition, we deal with the case d = 1. See [Yar18, Proposition 1] for the
general case. As for Proposition 2.2, the idea is to use a kernel-like method. Here, as we deal with ReLU
networks, we consider the triangle kernel

φ(x) := (1−|x|)+ = (1−x+− (−x)+)+,

which can be realized by a ReLU network with two layers. Now, fix m ≥ 1. One easily checks that φ
defines a partition of unity, in the sense that for all x ∈ [0,1],

m∑
j=0

φ(mx − j ) = 1,

with the support of each x 7→φ(mx − j ) equal to the segment [( j −1)/m, ( j +1)/m]. We then consider
the piecewise linear map1

f̃1(x) =
m∑

j=0
f ( j /m)φ(mx − j ).

As φ has been expressed with ReLU, f̃1(x) can be computed with m +1 parallel blocks computing the
φ(mx − j )’s, and then combining them together with a final sum weighted by the f ( j /m)’s2.

To show that ∥ f − f̃1∥∞ is small, note that each element φ(mx − j ) of the sum is non-zero if and
only if |x − j /m| < 1/m, so that we can write

| f (x)− f̃1(x)| =
∣∣∣∣∣ m∑

j=0
φ(mx − j )

(
f (x)− f ( j /m)

)∣∣∣∣∣
≤

m∑
j=0

φ(mx − j )| f (x)− f ( j /m)|

≤
m∑

j=0
φ(mx − j )L|x − j /m|

≤ L/m

The proof for d = 1 is hence complete by taking s ≍ m.

Note that the weights of the network of Theorem 2.4 either do not depend on f , or are of the form
f (x) for some x ∈ [0,1]d . In particular, the weight assignment is continuous in f . In this context of
continuous weight assignment, it appears that the expressivity of the neural networks of Theorem 2.4
is optimal. The result holds even beyond neural net classes.

Proposition 2.5 (Importance of Weights discontinuity). For all continuous weight assignment map
Ws : (Lip1([0,1]d ),∥ ·∥∞) → (Rs ,∥ ·∥) and all reconstruction map Rs :Rs →C ([0,1]d ),

sup
f ∈Lip1([0,1]d )

∥Rs (Ws ( f ))− f ∥∞ ≳ s−1/d .

Proof. Follows from a topological argument (Borsuk’s antipodality) and a decomposition of Lipschitz
functions over a grid. See [DHM89, Theorems 3.1 & 4.2].

1For d > 1, the kernel φ is based on a d-dimensional simplex, and the sum defining f̃1 ranges over md terms.
2Slight abuse here: we do not apply ReLU after the linear layer. However, as t = t+ − (−t )+ for all t ∈ R, we are good up to

adding a single layer with two neurons. See Examples 1.5 and 1.6.
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Dictionary

True f Initial interpolation f̃1 Final approximation f̃ = f̃1 + f̃2

Figure 2.1: Construction for Theorem 2.7 in dimension d = 1.

In addition, the network of Theorem 2.4 is wider as its precision increases (Nmax(Φ) ≍ ∥Φ∥0), but
has constant width (L(Φ) depends only on d). Actually, only considering shallow networks constrains
their accuracy, as stated in the following proposition.

Proposition 2.6 (Lower Bound on Depth for ReLU). For all s large enough and all neural network
architecture (ΦW )W ∈Rs with s weights and ReLu activation ρ(u) = u+, if

sup
f ∈Lip1([0,1]d )

inf
W ∈Rs

∥R(ΦW )− f ∥∞ ≲ s−k/d

with k ∈ [1,2], then this architecture has depth at least

sup
W ∈Rs

L(ΦW )≳
sk−1

log s
.

Proof. Follows the same complexity ideas as Proposition 2.3. See (3.5) and [Yar18, Theorem 1].

With the two above precision lower bounds, the next natural question is about the actual feasibility
of the precision s−k/d with k ∈ (1,2]. We see that any ReLU architecture attaining this rate with k =
2 should be very deep (Proposition 2.6), and necessarily be constructed with discontinuous weight
assignments in f (Proposition 2.5). It turns out that such a construction is possible.

Theorem 2.7 (Optimal Upper Bound for ReLU). For s large enough, there exists a neural network ar-
chitecture (ΦW )W ∈Rs with less than s weights, such that with the ReLU activation function function
ρ(u) = u+, we have

sup
f ∈Lip1([0,1]d )

inf
W ∈Rs

∥ f −R(ΦW )∥∞ ≲ s−2/d .

This architecture has depth L(Φ) ≍ s and width Nmax(Φ) ≤ 2d +10.

Proof. Given f ∈ Lip1([0,1]d ), the method consists of first using the network of Theorem 2.4: we get a
preliminary piecewise-linear function f̃1 that interpolates f on a length scale ≍ s−1/d . Then, we build
a map f̃2 to approximate the rest f2 = f − f̃1 on a smaller length scale ≍ s−2/d , by using a finite set of
candidate shapes (dictionary), and a fit of one of the shapes in each patch of size ≍ s−1/d through a
discrete iterative encoding. The iterative nature of this encoding (bit extraction in base 3 on coordi-
nates of x) is at the origin of the large depth of the final result. The final approximating function is
f̃ = f̃1 + f̃2. See Figure 2.1 for insights, and [Yar18, Theorem 2] for a rigorous proof.
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2.3 Curse of dimensionality & high-dimensional approximation

At this stage of the chapter, we have discussed two main features of approximation theory with neural
networks. First, that the properties of the activation function does impact the capacity of approxima-
tion of the associated networks (Proposition 2.3 and Theorem 2.7). Second, that shallow networks can
have limited approximation properties compared to deeper ones (Proposition 2.6). However, we do
not quite see why neural networks should be preferred as an approximation class, compared to more
classical classes such as Fourier sums or Wavelets.

Actually, neural networks adapt more naturally to low-dimensional functional structures. Indeed,
the approximation bounds of previous sections deteriorate exponentially with d , as precision over
Lip1([0,1]d ) are of the form s−k/d with s coefficients. For large d , this yields slow rates as s grows. This
phenomenon, called the curse of dimensionality, is inherent to Lip1([0,1]d ) (or to any reasonable class
of functions with d variables), and is not an artefact the neural networks. That is, Fourier and Wavelet
series would yield similar bounds.

To overcome this curse of dimensionality, we are therefore obliged to narrow the study, and con-
sider more specific/stringent classes of functions. For instance, approximating a sum f (x1, . . . , xd ) =∑d

j=1 g (x j ) of univariate functions, each depending on one coordinate only, would require much less
coefficients, as it fundamentally amounts to just d one-dimensional problems. Such a structural as-
sumption of “sparse dependency” actually is pretty realistic for real data, and is often formalized using
submanifolds of Rd .

More generally, it appears that any continuous function can be expressed as a superposition of
univariate functions over coordinates. The precise result is the following.

Theorem 2.8 (Kolmogorov Superposition Theorem). For all d ≥ 1, there exists (λ j )1≤ j≤d with λ j > 0

and
∑d

j=1λ j ≤ 1, and 2d+1 continuous strictly increasing 1-Lipschitz functions (χi )1≤i≤2d+1 which map

[0,1] to itself, such that every f ∈C ([0,1]d ) can be represented as

f (x1, . . . , xd ) =
2d+1∑
i=1

g f

( d∑
j=1

λ jχi (x j )
)
,

for some g f ∈C ([0,1]) depending on f .

Proof. See [LGM96, p. 553] for a (non-constructive) proof.

Naturally, Theorem 2.8 is not a free-lunch result: functions g f and χ j are intractable to compute
and not more regular than continuous. However, it gives us a motivating example to consider simpler
classes of d-dimensional functions, for which better approximation rates are hopefully attainable.

Theorem 2.9 (Dimension-Free Upper Bound under Structural Constraints). Let F̃K ([0,1]d ) be the class
of functions f : [0,1]d → R such that there exist (λ j )1≤ j≤d with λ j > 0 and

∑d
j=1λ j ≤ 1, K [0,1]-valued

functions χi ∈ Lip1([0,1]) (i ∈ {1, . . . ,K }), and gi ∈ Lip1([0,1]) such that

f (x1, . . . , xd ) =
K∑

i=1
gi

( d∑
j=1

λ jχi (x j )
)
,

Then for s large enough, there exists a neural network architecture (ΦW )W ∈Rs with less than s weights,
such that with the ReLU activation function ρ(u) = u+, we have

sup
f ∈F̃K ([0,1]d )

inf
W ∈Rs

∥ f −R(ΦW )∥∞ ≲
K 3

s2 .

This architecture has depth L(Φ) ≍ s/K and width Nmax(Φ)≲K d.
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Proof. Write (g̃ j )i≤K and (χ̃ j )i≤K for the realizations of the approximations of (g j )i≤K and (χ j )i≤K

given by Theorem 2.7 with s′ coefficients, for some s′ large enough to be chosen later. Note that here,
Theorem 2.4 is applied in dimension d = 1, so that for all i ≤ K , ∥g̃i − gi∥∞ ≲ (1/s′)2 and ∥χ̃i −χi∥∞ ≲
(1/s′)2, with associated neural network structures independent of d . Furthermore, up to replacing χ̃i

by min{(χ̃i )+,1} = (χ̃i )++1−(
(χ̃i )+−1

)
+ (which only costs two extra ReLU layers), we can assume that

0 ≤ χ̃i ≤ 1 over [0,1] for all i ≤ K , with no precision loss since 0 ≤χi ≤ 1. Now, consider

f̃ (x) :=
K∑

i=1
g̃i

( d∑
j=1

λ j χ̃i (x j )
)
.

Since gi ∈ Lip1([0,1]) for all i ≤ K , we have

∥ f − f̃ ∥∞ ≤
K∑

i=1

∥∥∥gi

( d∑
j=1

λ jχi (· j )
)
− g̃i

( d∑
j=1

λ j χ̃i (· j )
)∥∥∥∞

≤
K∑

i=1

{
∥gi − g̃i∥∞+

∥∥∥ d∑
j=1

λ jχi (· j )−
d∑

j=1
λ j χ̃i (· j )

∥∥∥∞}
,

≤
K∑

i=1

{∥gi − g̃i∥∞+ max
1≤ j≤d

∥χi − χ̃i∥∞
}
,

where the last line uses that
∑d

j=1λ j ≤ 1 and λ j ≥ 0. As a result, we obtain ∥ f − f̃ ∥∞ ≲K /(s′)2.

Finally, we note that f̃ can realized by stacking all the networks that compute the χ̃i (x j ) on the first

layer (depth ≍ s′, width ≲ K d in total), then computing
∑d

j=1λ j χ̃i (· j ) with one linear layer3, feeding

this layer to g̃i for all 1 ≤ i ≤ K in parallel (depth ≍ s′, width ≲K in total) and then summing again the
results. Putting everything together, we obtain ∥ f − f̃ ∥∞ ≲K /(s′)2 with ≲ s′K neurons and depth ≲ s′.
Taking s = s′K yields the announced result.

As will be developed in Chapter 4 in more details, functions that can be represented with com-
position structures of regular maps, each with a few variables d0 ≪ d , yield approximation rates that
depend on d0 and not (or mildly) on d .

Exercise 2.10. Derive a result similar to Theorem 2.9, over the class of functions f : [0,1]4 →R that can
be expressed as

f (x1, x2, x3, x4) = f3
(

f2,1(x1)+ f2,2(x2, x3)+ f2,3(x3, f1(x1, x2))
)
,

where all the functions appearing are real-valued and 1-Lipschitz.

Exercise 2.11. Given a fixed modulus of continuityω :R+ →R+, reproduce the proofs of Proposition 2.2
and Theorem 2.4 for the class of function

Fω([0,1]d ) :=
{

f : [0,1]d →R,∀x, y ∈ [0,1]d , | f (x)− f (y)| ≤ω(∥x − y∥)}
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